Ionizing radiation induces prostate cancer neuroendocrine differentiation through interplay of CREB and ATF2: implications for disease progression.

نویسندگان

  • Xuehong Deng
  • Han Liu
  • Jiaoti Huang
  • Liang Cheng
  • Evan T Keller
  • Sarah J Parsons
  • Chang-Deng Hu
چکیده

Radiation therapy is a first-line treatment for prostate cancer patients with localized tumors. Although some patients respond well to the treatment, approximately 10% of low-risk and up to 60% of high-risk prostate cancer patients experience recurrent tumors. However, the molecular mechanisms underlying tumor recurrence remain largely unknown. Here we show that fractionated ionizing radiation (IR) induces differentiation of LNCaP prostate cancer cells into neuroendocrine (NE)-like cells, which are known to be implicated in prostate cancer progression, androgen-independent growth, and poor prognosis. Further analyses revealed that two cyclic AMP-responsive element binding transcription factors, cyclic AMP-response element binding protein (CREB) and activating transcription factor 2 (ATF2), function as a transcriptional activator and a repressor, respectively, of NE-like differentiation and that IR induces NE-like differentiation by increasing the nuclear content of phospho-CREB and cytoplasmic accumulation of ATF2. Consistent with this notion, stable expression of a nonphosphorylatable CREB or a constitutively nuclear-localized ATF2 in LNCaP cells inhibits IR-induced NE-like differentiation. IR-induced NE-like morphologies are reversible, and three IR-resistant clones isolated from dedifferentiated cells have acquired the ability to proliferate and lost the NE-like cell properties. In addition, these three IR-resistant clones exhibit differential responses to IR- and androgen depletion-induced NE-like differentiation. However, they are all resistant to cell death induced by IR and the chemotherapeutic agent docetaxel and to androgen depletion-induced growth inhibition. These results suggest that radiation therapy-induced NE-like differentiation may represent a novel pathway by which prostate cancer cells survive the treatment and contribute to tumor recurrence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GRK3 is a direct target of CREB activation and regulates neuroendocrine differentiation of prostate cancer cells

Neuroendocrine prostate cancer (NEPC) is an aggressive subtype of prostate cancer that commonly arises through neuroendocrine differentiation (NED) of prostate adenocarcinoma (PAC) after therapy, such as radiation therapy and androgen deprivation treatment (ADT). No effective therapeutic is available for NEPC and its molecular mechanisms remain poorly understood. We have reported that G protein...

متن کامل

Dual effect of pituitary adenylate cyclase activating polypeptide on prostate tumor LNCaP cells: short- and long-term exposure affect proliferation and neuroendocrine differentiation.

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that elicits the increase of intracellular cAMP levels and protein kinase A activity in various cell systems. Here we show that the pattern of cAMP elevation triggered by PACAP is critical for the fate of LNCaP prostate cancer cells. We demonstrate that these cells express PACAP and its type 1 receptor. A short-term st...

متن کامل

Differential effects of prostate cancer therapeutics on neuroendocrine transdifferentiation.

Androgen ablation therapy is widely used for the treatment of advanced prostate cancer. However, the effectiveness of this intervention strategy is generally short-lived as the disease ultimately progresses to a hormone-refractory state. In recent years, it has become clear that even in antiandrogen-resistant cancers the androgen receptor (AR) signaling axis is intact and is required for prosta...

متن کامل

Androgen-Targeted Therapy-Induced Epithelial Mesenchymal Plasticity and Neuroendocrine Transdifferentiation in Prostate Cancer: An Opportunity for Intervention

Androgens regulate biological pathways to promote proliferation, differentiation, and survival of benign and malignant prostate tissue. Androgen receptor (AR) targeted therapies exploit this dependence and are used in advanced prostate cancer to control disease progression. Contemporary treatment regimens involve sequential use of inhibitors of androgen synthesis or AR function. Although target...

متن کامل

SIRT1 contributes to neuroendocrine differentiation of prostate cancer

The epigenetic factor SIRT1 can promote prostate cancer progression, but it is unclear whether SIRT1 contributes to neuroendocrine differentiation. In this study, we showed that androgen deprivation can induce reactive oxygen species production and that reactive oxygen species, in turn, activate SIRT1 expression. The increased SIRT1 expression induces neuroendocrine differentiation of prostate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 68 23  شماره 

صفحات  -

تاریخ انتشار 2008